Understanding the EV Elephant: Limited subsidy and Low-affordability imperatives for EVs in India

> Ashok Jhunjhunwala, IIT Madras, <u>ashok@tenet.res.in</u> with Prabhjot Kaur, IITM

India Recognises today

- EV is the future
 - Four times higher energy efficiency and far higher reliability (50 times less moving parts)
 - will threaten India's GDP (auto-sector 7.1% + 5% transport fuel processing and distribution) and large number of jobs
- India has low affordability
 - 30 to 40% subsidy on Electric Vehicles in USA, Europe and China: but subsidies in India will be limited (or none at all)
 - EV must make business sense even with this!
- How do we make business sense? Battery contributes to 50% of costs
 - Falling rapidly over last five years
 - Battery-pack with low-cost NMC-Graphite cells under \$200 per kWh today
 - but still expensive for the desired range

Year	Li battery costs per kWh	
2012	USD 600	
2015	USD 450	
2017	USD 250	
2020	USD 150	
2024	< USD 100	

India EV program needs to be Innovative and Different

• India's autos different from that in most of the world: **small and affordable vehicles**

- Domination of 2-wheelers: 79%
- Autos including small goods vehicle: 4% (rickshaw not included)
- Buses and large goods vehicle (including trucks): 3%
- Economy Cars costing below ₹1 million: 12%
- Premium Cars costing above ₹1 million: 2%
- 98% of public and affordable vehicles: not the focus of the rest of the world; India would attempt to get leadership here
- 2% vehicles (premium four-wheelers): similar to that in rest of world; India would learn and adopt; encourage multinationals to manufacture them in India
 - Will help us build a stronger ecosystem for components and subsystems

98%

EVs for Public Transport

- Focus on higher efficiency: Wh/km (equivalent to kms/litre of petrol)
 - Lower Wh/km brings down battery size, weight and cost
 - For e-autos in last six months: from 70 to 80 Wh/km to 45/50 Wh/km
 - E-buses: from 1600 Wh/km to 900 Wh/km
- Split battery into smaller size (one third) and swap
 - No waiting time to charge battery: no public infrastructure required
- Battery-life severely affected by Fast Charging at 45 deg C
 - Swapped battery can be charged in conditioned environment and in two hours to maximise its life

35-40%

reduction

swap

swap

swap

Battery size

without range anxiety

Approach towards Business Viability

- Separate vehicle business (without battery) & energy business (battery)
 - Capital cost similar to that for petrol / diesel vehicle
 - Operation cost today same as petrol / diesel vehicle
 - WITH no SUBSIDY; but lower GST for strictly three years
- Drive Volumes using public vehicles
 - Get companies to buy vehicles in bulk (100,000 plus) and lease
 - Get companies to buy batteries in bulk and set up energy business
 - Private vehicles to leverage the eco-system
 - No subsidy needed as with these 5 steps, capital cost of vehicle similar to that for petrol vehicles, and ₹/km operation costs same as petrol / diesel / CNG

Private Vehicles: EV Batteries, costs and range-anxiety

- Batteries dominate the cost of an EV
 - Larger battery increase costs (Tesla uses battery for 540 kms)
 - and also vehicle weight (reducing the energy efficiency or kms/kWh)
 - Smaller battery creates range anxiety
 - Use Public Fast Charger: waiting time + public charging infrastructure
 - Fast Charger with 1C charge: takes about an hour to charge the battery
 - 4C Fast Charger -- 15 to 20 minutes: but reduces battery life for low-cost Graphite-NMC batteries (gets worse as temperature crosses 40°C)
 - Alternatively LTO batteries: Charge Fast even at high temp: but three times costlier

Alternative: Range-extender Batteries for 4W / 2W

- Suppose EVs have a small low-cost battery with limited range builtin (example 100 km range for e-car or 50 km for e-scooter)
 - Enough to drive within cities for 90% of days
 - Use only night-time Slow Charging: maximising battery life
 - Affordable
- When one needs to drive longer distances (10% of days)
 - use a RANGE EXTENDER battery to overcome range anxiety
 - Swap-in a second (swappable) battery doubling the range at a petrol pump (3 to 5 minutes), enabling another 100 kms range for a e-car
 - Swap the swappable battery again for still longer range (300 kms or 400 kms)
 - Swapping by Energy Operators

Summing up: India's Tasks

- 1. Most Energy Efficient Vehicles: low Wh/km will reduce the size of the battery
 - Better motor and drive (power-train), better tyres, lower weight and better aerodynamics
- Battery ecosystem: Pack manufacturing (30%), cell-making (30%), materials and chemicals (40%)
- Charging and swapping Infrastructure for range-extension – Slow-charging, fast charging and battery swapping
- 4. Demand Generation and Policies

Task I: Vehicles and Demand generation

- E-rickshaw & e-auto: just started to deployed with battery swapping will scale
- E-cargo auto: to be developed over next six months with battery swapping
- 2-wheelers with **RE battery swap**: will launch in a few months
- 4-wheeelers with **RE battery swap**: to be ready in six months
- 9m / 12 m city buses
 - With battery swapping at end of each trip: to be deployed in six months
 - Most City buses travel 30 km /trip
 - Typical 8 trips per day
 - Swap at each trip

Tasks II: Batteries

- Battery pack development: thermal design, mechanical design and Battery Management System to get the best out of low-cost cell: largely ready
 - established and start-ups [30% value add]
- Battery Cell Development
 - JV with external tie-ups [30% value add]
- Battery Material Development: great progress with battery recycling (urban mining) [40% value add]
 - scaling on way

Cell Manufacturing: 2019 -20 India has little Li, Mn, Co Battery Recycling to recover 95% of Li, Mn and Co, and 93% of Ni and Mn and 90% Graphite

Cell to Pack Manufacturing

2017 – some 15 companies

Vehicles on Drive Pilot with Battery swapping at CBEEV, IITM Campus

Test vehicle with school kids, residents and staff in IITM campus

Cell voltage and temperature monitoring during driving

Performance Comparison

S.No	Make and Model	Wh/Km	Distance travelled (Kms)
1	Make 1, Model A	44	36
3	Make 1, Model C	38	27
4	Make 2, Model A	42	43
5	Make 2, Model B	37	51
6	Make 3	39	46
7	Make 4	58	31
8	Make 5	41	46

Sample Dated: 14th June, 2018

S.No	Vehicle Make	Total Rides	Avg. Wh/Km
1	Make 1/C	164	40.36
2	Make 2	331	44.15
3	Make 3	324	44.28
4	Make 4	419	46.29
5	Make 5	82	52.18
	All	1320	45.45

Cumulative of 4 Months

- India needs innovative appro
 Or will be flooded by imports
- Time is of essence

- Vehicles: Ashok Leyland, Tata Motors, Mahindra, Eicher, Bajaj, Kinetic, Lohia, Electrotherm, Goenka, Hero-Eco, Okinawa, Ather, Avon Cycles, TVS Motors
- Li Ion Battery and recycling: Exide, Amar Raja, Exicom, ACME, Grintech, Greenfuel, Ion Batteries, Attero, Sun-mobility
- Energy Operators: Essel Infra, Sun-mobility, BPCL, NTPC, PGCIL, Kerala DISCOM, Goldstone
- Chargers, Motors and Monitoring: Delta, ACME, Exicom, TVS Motors, Esmito
- Most State Governments, STUs
- Several industries and start-ups have worked hard over the last few years
 - They need to be encouraged and see a continuous forward movement
- More focus on Make in India and start-ups
 - With attempts to preserve India's GDP and grow jobs
- Can we do it by 2030: Certainly

For deeper understanding, look at the blog "understanding the EV Elephant": <u>https://electric-vehicles-in-india.blogspot.in/2017/12/</u>