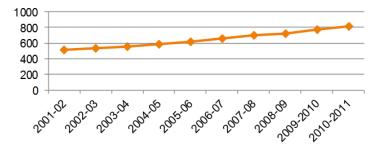
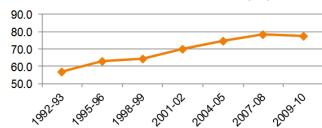
Can we dream of 50% of India's Power in 2030 from Solar PV? Decentralized Approach: Game changer

Technology Day, IICT Hyderabad

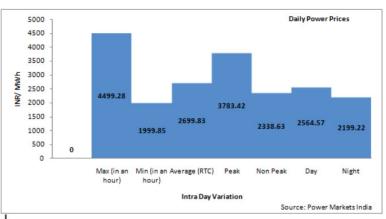

Ashok Jhunjhunwala, IIT Madras, ashok@tenet.res.in

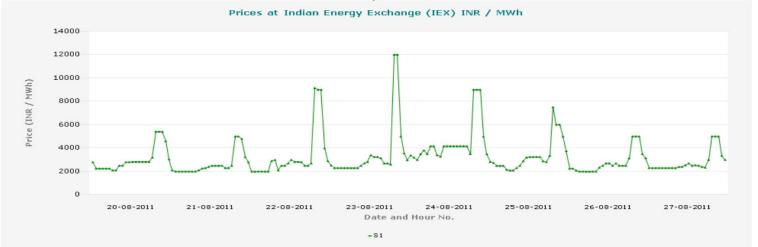
As India's Economy continues to grow


- India's average GDP growth during 2006-09: 8.6%
 - 7% world's GDP with 17% population
 - · Increasing demand for energy from a low base
 - But affordability is the key: solutions that sell in india have to be at Indian prices
- Generation capacity continues to increase
 - Keeping pace with country's rapid (8 to 9%) economic growth

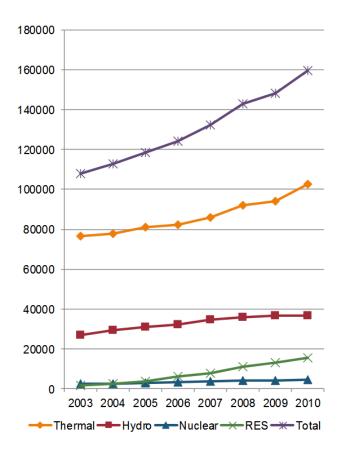
Consumption	India	World
per-capita electricity (kgOE)	704	2752
average energy (TOE)	0.53	1.82

Energy Generated (BU)


Plant Load Factor (%)



- Even Plant Load Factors have also continued to increase along with generation
 - · Plant load factor still low


India's Real Power Deficit

- Huge power shortage during peak hours
 - As evident from the fluctuating prices at Power Markets at source
 - · Day variation of Rs 2 to 4.5 per unit
 - Prices vary from Rs 2 to 12 per unit in one week
 - About 50 to 70% needs to be added to the price to account for T&D and operation costs

India's Fuel-wise Generation-Capacity (MW)

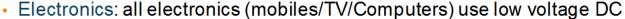
- Coal: good for base-load
 - · significant domestic reserves
 - · proven reserves of 105 billion tonnes
 - could last 200 years at current production level
 - · Not good for environment
- Natural gas share up from 4.4% to 10% in last 15 years
 - emit half as much CO2 per kWh as compared to coal-based plants
- Hydroelectric potential of 600 billion kWh per annum
 - Capacity of 148.7 GW
 - only 23% realised so far
 - High initial costs and developmental risks
- Nuclear: small

Is there a solution?

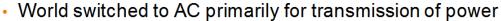
Commercial Power Options

- Grid: Rs 5 to 9 per kWh: ram-bharose (as per god's will)
- Diesel generator: Rs 23 per unit when at 80% load: instantaneous
 - at 40% generator load, costs goes up to Rs 35 per unit
- Electrical battery back-up: storage costs over Rs 12- 15 per kWh
- Solar PV: under Rs 5 per kWh when dc is used: day time only
 - · Conversion to AC may add Rs 1 per unit; land may add ???

	Solar PV power price at DC level				
	Lead acid battery				
	Battery cost (per kWh)	Rs. 6,000.00		Battery cost (to deliver 1kWh)	Rs. 15,000.00
- Consessed	discharge	40%		depreciation (years)	4.11
	Number of cycles	1500		Storage cost per unit	Rs. 15.35
Li-lon av-wash	interest rate	14%			
	cycles used per day	1			


10%

But can DC be used?


- Lighting
 - CFL is four times more energy efficient than tungsten bulb and neutral to AC or DC
 - · LEDs, 4 to 10 times more efficient than CFL, use only DC power

- Motor: small BLDC motor 2 time energy efficient as compared to AC motor
 - Historically brush replacement needed but not anymore
 - A fan is primarily a motor a dc fan also allows better speed control
 - · A refrigerator is essentially a motor
 - An air-conditioner has a motor (even-though it involves cooling)
 - A washing-machine / grinder is a motor

Need an ac/dc power adaptor to charge

Any ac / dc conversion or vice-versa implies 7 to 15% losses

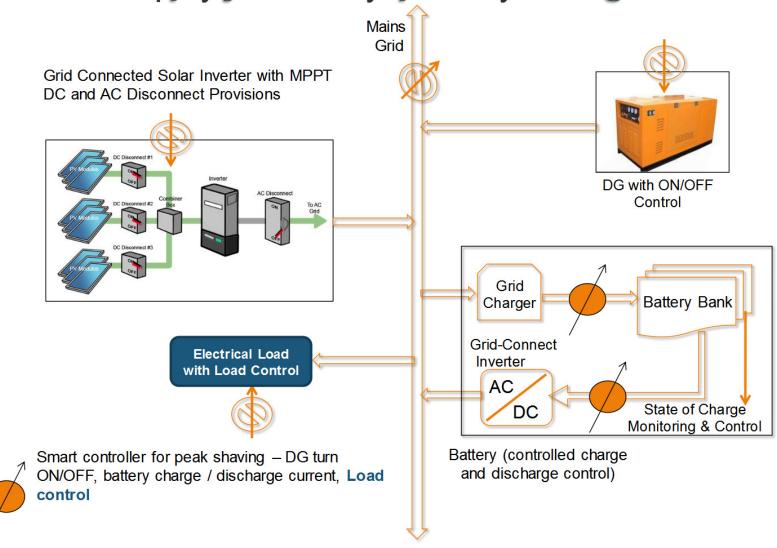
Has time come to switch back – at least at customer's premises? solar can then be used directly in buildings

Four Sectors

- Homes
- Offices and Commercial buildings
- Agriculture: mostly pump power
- Industry

To get 50% power from solar, one has to impact all these sectors

Solar DC Homes


- A large political dilemma
 - · Tariff increase adversely affects low-income families
 - · Subsidized tariffs make state electricity boards unviable
- How does incentivize home owners to use solar and DC?
- Supply a fixed amount (say 100W) DC power at subsidized rate
 - AC power at market rate
 - On top of it, make DC attractive as uninterrupted power
 - whereas AC power supply has power-cuts when there is load-shedding
 - But what can 100W DC power do?
 - Three LED light + 2 DC fans + mobile / tablet / laptop charger + LCD TV (with 1 fan)
 - · Will encourage use of DC devices
 - Residents can supplement DC power by adding 200W solar and a five hour battery at around Rs15000
 - Will enable a few more devices to be connected
- Will result into efficiency + solar + viable EBs

Commercial Buildings: Decentralized Solar PV

- Would be ideal in day time: complement grid
 - Direct usage in offices / shopping malls can reduce the day time peak load
 - Makes economic sense today, provided there is space for solar PV installation
 - Natural Load demand match for cooling
 - no additional land cost; T&D losses controlled
 - Gradual shift to DC usage will add cost and energy-efficiency
- What about evening peak loads? Solar can not help
 - Reducing consumption by introduction of time of day metering
 - Can one start and close office early!!
 - Reducing load by enhancing efficiency
 - Using some storage

Solar Deployment dor. peakishawing

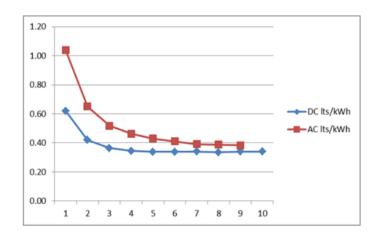
Solar powering of Agricultural Pumps

- Significant savings possible of subsidized electricity
 - Important that it is not subsidy driven but push towards making it commercially viable for farmers
 - Current pump-sizing determined by 1-2 hour power availability
 - Solar Agricultural pumps could be run for 10 hours
 - Need much smaller sizing pumps: will pump required water
 - · Would reduce solar array size
 - Minimize costs as well as minimal shaded agricultural land
 - Solar water pumps along with drip-irrigation desirable

Industry

- · Still in the works
 - Solar generation on roof can certainly play a role
 - Use of DC lighting will help
 - · Some of the motors can become more efficient...

TASKS AHEAD


Start implementing use of solar PV at homes, offices, agriculture

Need Intensive R&D

- Solar panels: leverage world's availability
 - Continuously evolving technology
 - Need R&D to catch up with the world
 - Manufacturers willing to set up solar cell manufacturing in India
- Power Electronics, smart controller, combining grid-solarbattery judiciously, system design, protection
 - India has the ability
 - Need focused work
- Storage
 - Research needed on new electrical batteries
 - · Storing energy in other forms: for example heat / coldness storage

DC Sources and Loads

- Diesel generator generates 3 kWh of power per litre of diesel
 - only if generator works at 80% load
 - efficiency drops with lower loads
 - Not so with DC diesel generator
 - May be ideal as evening solution in absence of battery / grid

DC Motors

- BLDC motors for all kinds of applications
- Ferrite and Rare-earth Magnets: efficient power-electronics

DC Powered Air-conditioners

- Solar PV with MPPT and VFD driving
 - · New Power electronics and robust motor required
- New type of air-con with energy-efficient DC motors (BLDC or SRM)
 - consumption of 55-60% of regular AC (but 30% more expensive)
 - when sun is brightest, it is expected to be hottest and vice-versa
 - Natural Load Demand Match
- Also DC Powered Air-coolers

DC Sources and Loads

- DC Powered Cold-Storage: Technology and Economics
- Solar Agricultural Pumps (10 million)
 - Water can be pumped when sun is there
 - More water when sun is strong; during rainy seasons, lesser requirement of water: natural Load-demand match
 - Efficient power-electronics for solar PV to directly drive pumps
- DC Fans and Lights: costs and availability
 - Need to figure out right DC voltage
 - · Wiring losses: Can they use existing wiring harness? Speed / brightness control
 - DC power protection; earthing
 - Minimize dc-dc conversion losses and costs
 - Design and proliferate SME for manufacturing and distribution
- DC Powered-Electronics
 - What should be the right voltage? Standards?

Work on alternative storage

- Flow-battery may be answer to storage
 - · Work required on Redox flow-battery to make it inexpensive
 - Vanadium or Zn- Bromide Redox-flow battery
- Is it possible to store heat / coolness
 - Can even generate during off-peak hours and use it during peak hours.

Policy Issues

- Long-term financing of decentralized solar panels at lower interest rate
 - · Such Solar panels should be included in Priority-sector lending
- Subsidy
 - Should enable early commercial viability, rather than making subsidy and end-game
- Time of day metering
 - · At least for commercial and industrial load for day time peak
 - Evening peak also to be priced high so as to shift power usage pattern

To sum-up

- Solar PV today is a god-sent opportunity for India
 - A year to two of work can make solar power work for us dc power usage will help
 - at least in the day time; storage solution will be another game-changer
 - Use as much natural load-demand match at possible
- Smart-grids for India
 - Key is to match load with available power
 - · At local-level as far as possible if necessary by selective power-shedding
- Number of technical challenges need to be overcome
 - System design issues are critical
 - pilot deployments are key to prove viability
 - · Early pilots are three to four months away
- Policy actions to promote solar PV instead of subsidy
- One can dream of getting 50% of India's power requirements using solar PV by the year 2030 or so
 - Can transform India